Direction discrimination thresholds of vestibular and cerebellar nuclei neurons.

نویسندگان

  • Sheng Liu
  • Tatyana Yakusheva
  • Gregory C Deangelis
  • Dora E Angelaki
چکیده

To understand the roles of the vestibular system in perceptual detection and discrimination of self-motion, it is critical to account for response variability in computing the sensitivity of vestibular neurons. Here we study responses of neurons with no eye movement sensitivity in the vestibular (VN) and rostral fastigial nuclei (FN) using high-frequency (2 Hz) oscillatory translational motion stimuli. The axis of translation (i.e., heading) varied slowly (1 degrees /s) in the horizontal plane as the animal was translated back and forth. Signal detection theory was used to compute the threshold sensitivity of VN/FN neurons for discriminating small variations in heading around all possible directions of translation. Across the population, minimum heading discrimination thresholds averaged 16.6 degrees +/- 1 degrees SE for FN neurons and 15.3 degrees +/- 2.2 degrees SE for VN neurons, severalfold larger than perceptual thresholds for heading discrimination. In line with previous studies and theoretical predictions, maximum discriminability was observed for directions where firing rate changed steeply as a function of heading, which occurs at headings approximately perpendicular to the maximum response direction. Forward/backward heading thresholds tended to be lower than lateral motion thresholds, and the ratio of lateral over forward heading thresholds averaged 2.2 +/- 6.1 (geometric mean +/- SD) for FN neurons and 1.1 +/- 4.4 for VN neurons. Our findings suggest that substantial pooling and/or selective decoding of vestibular signals from the vestibular and deep cerebellar nuclei may be important components of further processing. Such a characterization of neural sensitivity is critical for understanding how early stages of vestibular processing limit behavioral performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced choice-related activity and correlated noise accompany perceptual deficits following unilateral vestibular lesion.

Signals from the bilateral vestibular labyrinths work in tandem to generate robust estimates of our motion and orientation in the world. The relative contributions of each labyrinth to behavior, as well as how the brain recovers after unilateral peripheral damage, have been characterized for motor reflexes, but never for perceptual functions. Here we measure perceptual deficits in a heading dis...

متن کامل

Neuronal thresholds and choice-related activity of otolith afferent fibers during heading perception.

How activity of sensory neurons leads to perceptual decisions remains a challenge to understand. Correlations between choices and single neuron firing rates have been found early in vestibular processing, in the brainstem and cerebellum. To investigate the origins of choice-related activity, we have recorded from otolith afferent fibers while animals performed a fine heading discrimination task...

متن کامل

Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates.

Effective navigation and locomotion depend critically on an observer's ability to judge direction of linear self-motion, i.e., heading. The vestibular cue to heading is the direction of inertial acceleration that accompanies transient linear movements. This cue is transduced by the otolith organs. The otoliths also respond to gravitational acceleration, so vestibular heading discrimination coul...

متن کامل

How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus.

The peripheral vestibular system is faced by a sensory ambiguity, where primary otolith afferents respond identically to translational (inertial) accelerations and changes in head orientation relative to gravity. Under certain conditions, this sensory ambiguity can be resolved using extra-otolith cues, including semicircular canal signals. Here we review and summarize how neurons in the vestibu...

متن کامل

Multiple reference frames for motion in the primate cerebellum.

Knowledge of body motion through space is necessary for spatial orientation, self-motion perception, and postural control. Yet, sensory afferent signals may not directly provide such information to the brain. Because motion detected by the vestibular end organs is encoded in a head-fixed frame of reference, a coordinate transformation is thus required to encode body motion. In this study, we in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 2  شماره 

صفحات  -

تاریخ انتشار 2010